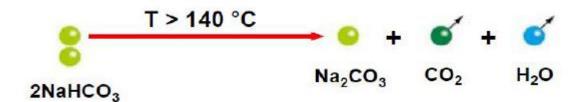
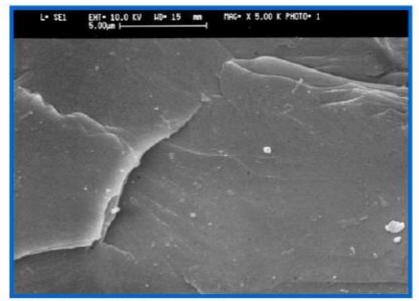

"有收益的环保"

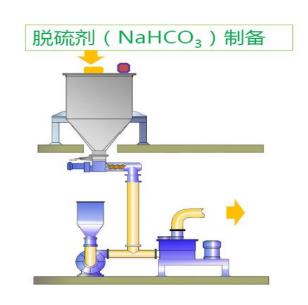

--焦炉烟气综合治理解决方案

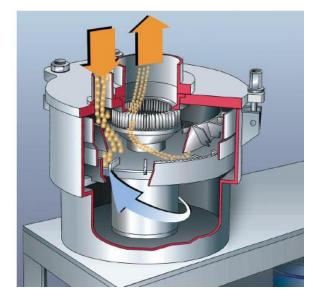


三、核心技术2--SDS脱硫

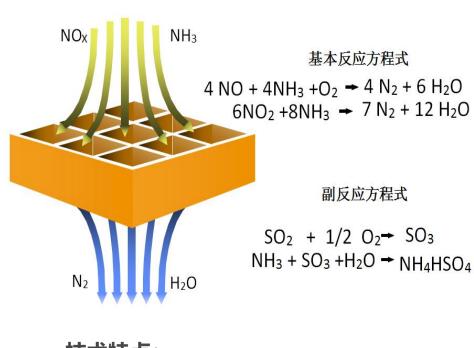
Natriumbikarbonat vor der thermischen Aktivierung

碳酸氢钠被加热前状况

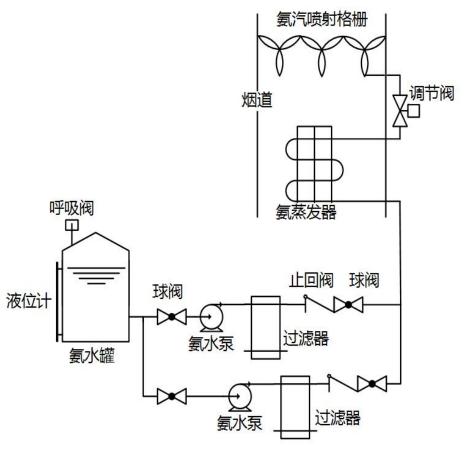

Aktiviertes Natriumkarbonat

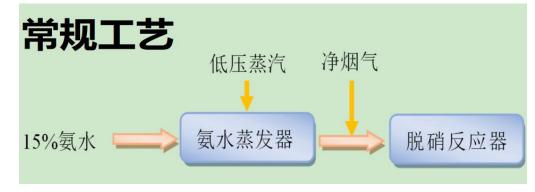

碳酸氢钠被加热后生成活化碳酸钠

三、核心技术2--SDS脱硫

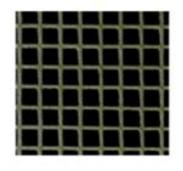

技术特点:

- 1. 技术先进,采用欧洲引进干法脱硫技术,已在欧洲成熟应用多年。
- 2. 干法脱硫,烟气基本无降温,排烟温度高,观感好。
- 3. 除磨机为专用设备外,工艺设备均为自行设计制造。
- 4. 脱硫副产物为干燥粉状。
- 5. 能完全适应烟气中有害物质浓度的变化。
- 6. 脱硫效率可达95%以上,满足超低排放的要求。
- 7. 投资低,运行成本低。

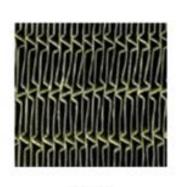



三、核心技术3--SCR脱硝

- 1. 烟气蒸发氨水,节约能源。
- 2. 氨汽直接喷射,国内首创。
- 3. 混风少,热损失小。


三、核心技术3--SCR脱硝

8		Gew%
Main raw material	TiO ₂	78%
	WO_3	9%
	SO ₃	0.5 - 1%
Doping	V ₂ O ₅	0 - 3%
Fibres	SiO ₂	7.5%
	Al ₂ O ₃	1.5%
	CaO	1%
	Na ₂ O+K ₂ O	0.1%

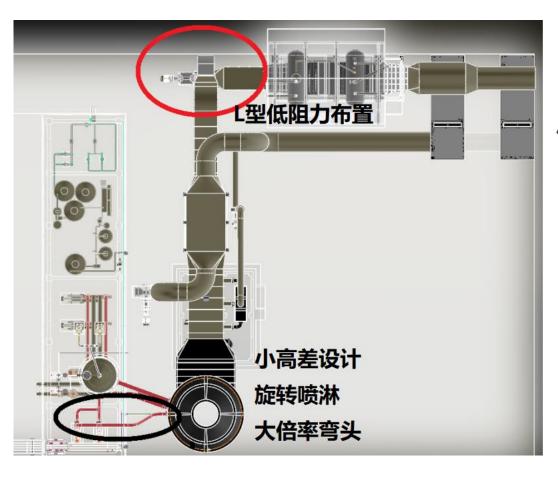


分类:

- 1、锰系、钒钛系
- 2、星空、板式、波纹式
- 3、低温、常温。
- 4、国产、进口。

蜂窝式

板式



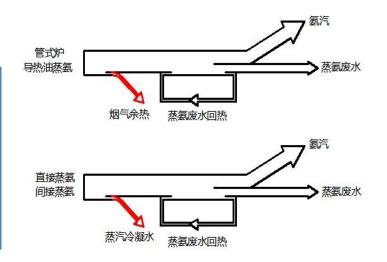
波纹式

创元热能 发明 共赢 "有收益的环保"

三、核心技术4--低阻力通风

节能的根本是提高能源效率而不是单方便减小能源消耗或简单采用"节能设备"。

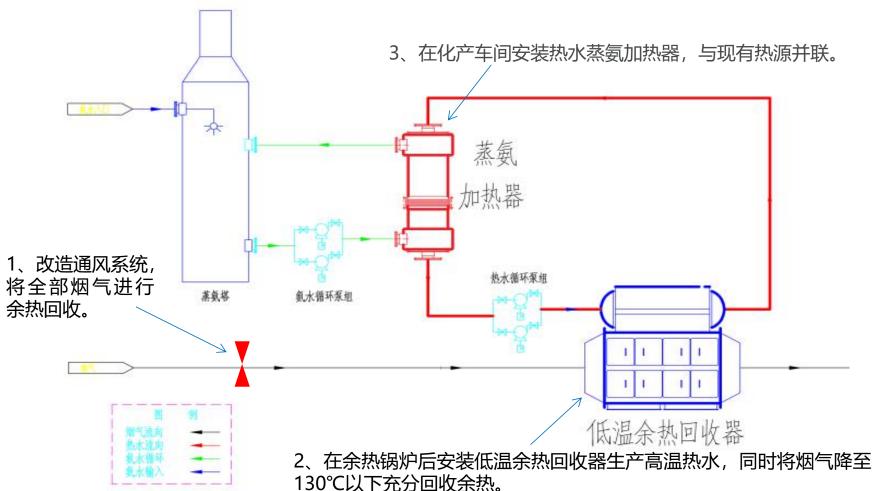
风机是最大的运行支出 低阻力设备 低阻力风道 低阻力布置 减小20%功耗


三、核心技术5-热水蒸氨

焦炉直接排烟温度250~300℃。部分烟气余热用于产蒸汽或煤调湿,余热锅炉由于生产高温蒸汽或设计问题只能将烟气温度降至170~190℃,而煤调湿无法利用全部烟气。现有技术仍有烟气余热资源未被开发。

在不影响脱硫脱硝通风等现有系统运行的前提下,180万吨焦炉可多回收的烟气余热达335万kcal/h以上(14GJ/h),生产130℃高温饱和循环水,代替6-7.3t/h蒸汽用于蒸氨。

主流蒸氨工艺能效和环保对比			
蒸氨方式	热效率	主要热损失	污染物
蒸汽直接	<90%	冷凝水显热	冷凝废水
间接蒸氨	90%	冷凝水显热	冷凝水
管式炉	85%	排烟	烟气
高温余热	60%	低温余热	无


	低温余热资源化解析				
	CO_2	H_2O	O_2	N_2	总烟气
比例	4.53	10.47	10.00	75.01	36万 Nm³/h
入口焓	3.26	6.44	5.40	39.53	54.6kcal/Nm ³
出口焓	2.44	4.91	4.11	30.23	41.8kcal/Nm ³
入口	170℃	出口	130℃	可回收	336.4万kcal/h

三、核心技术5-热水蒸氨

热水蒸氨技术是利用200℃以下未开发低温烟气余热产生130℃以上高温循环热水, 替代蒸汽、煤气等能源为蒸氨提供热源。

当烟气余热回收温差达到50℃以上时可做到纯余热蒸氨。

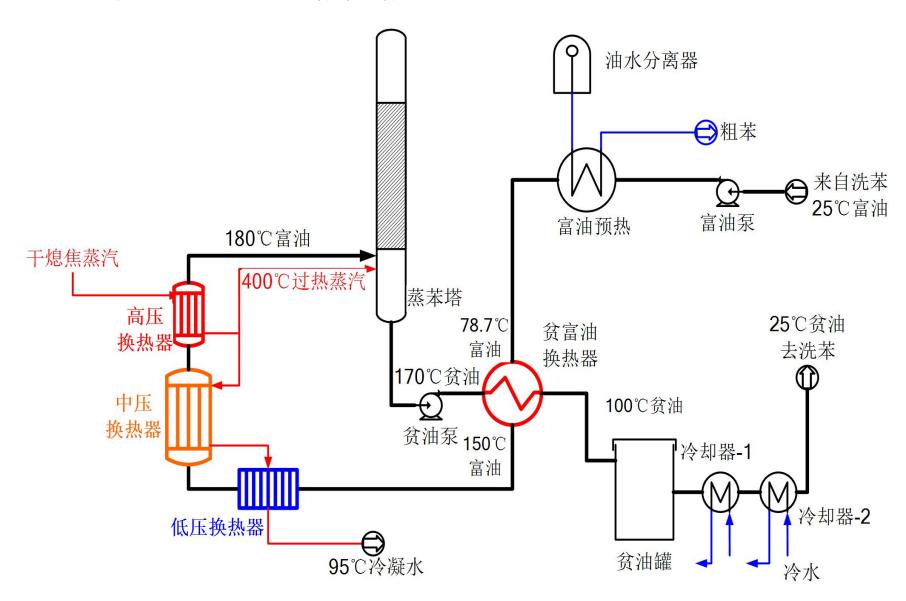
三、核心技术5-热水蒸氨

节能

将全部烟气抽取并降至130℃,充分回收烟气余热;

利用热水代替70%~100%常规能源,是当下节能效益最高的蒸氨技术。

减排


热水密闭循环,每吨剩余氨水减少150kg废水或330Nm3废气排放。

降低烟气温度,提高湿法脱硫效率。

降低烟气温度,减小40%脱硫补水,淡化烟羽。

全烟气抽取, 杜绝烟气漏排。

三、核心技术6--蒸汽脱苯

三、核心技术6--蒸汽脱苯

	优势	概要		
1	安全	不燃烧煤气,提高安全性。		
2	环保	不产生NOx,无需再进行余热回收。		
3	节能	蒸汽效率高-热利用率高;代高价煤气-更节约运行成本; 贫富油换热温差小-冷热需求小。		
4	减小损耗	蒸汽温度低,洗油的聚合碳化和损耗小。		
5	提高收率	冷量需求小,贫油温度更低,收率更高。		

四、解决方案--设备和流程

1、系统

高温蒸发器-SDS脱硫-布袋-SCR-余热锅炉-风机-热水蒸氨

2、余热利用

高温蒸发器-蒸发器-省煤器-除氧蒸发器-热水蒸氨

3、脱硫

粉磨站/SDS-布袋除尘器

4、脱硝

氨蒸发-SCR喷氨/稀释-催化还原; 定期除尘

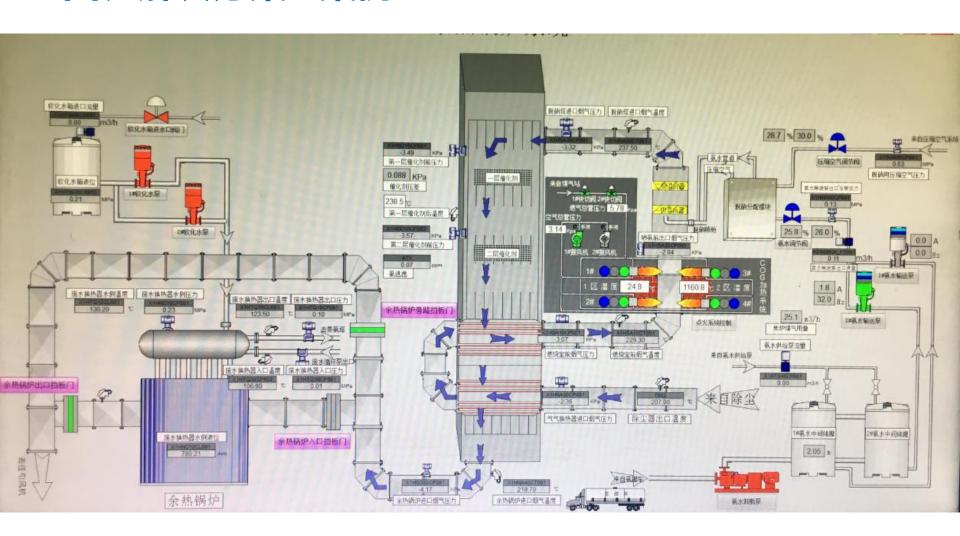
5, E&I

电气仪表自动化

四、解决方案--能效

运营成本			
耗材		耗量/单价	单位
ф	816	0.6	元/kWh
电		1360	万kWh/a
7 <u>^</u> +\-\	132	6.00	元/t
除盐水		22	万t/a
	32	100	元/t
 		3200	t/a
碳酸氢钠	960	3000	元/t
		0.4	t/h
人工	60	60	万元/a
维修折旧	400 万元		
小计	2400万元/a		

节能收益			
产品		产量/单价	单位
蒸汽	2100	100	元/t
		21	万t/h
热水蒸氨	1000	100	元/t
		10	万t/h
小计	3100万元/a		


高节能收益-低环保成本="有收益的环保"

四、解决方案--特点

- 1. 满足法规和招标要求
- 2. 全寿命期成本最低--风机阻力小、建设成本低。
- 3. 能效最高-----蒸汽产量大,国内首创热水蒸氨。
- 4 安全、人性化-----全自动运行,操作简单。

用先进的设计思想实现"有收益的环保"

四、解决方案--案例

创元热能 发明 共赢

烟台创元热能科技有限公司